

Highlights from the 2022 State of the Market Report for the NYISO Markets: Capacity Markets and State Policy

Presented by:

Pallas LeeVanSchaick Joe Coscia NYISO Market Monitoring Unit Potomac Economics

June 6, 2023

Introduction

- As the Market Monitoring Unit for NYISO, we produce an annual State of the Market (SOM) Report to:
 - ✓ Evaluate the performance of the markets;
 - ✓ Identify market flaws or market power concerns; and
 - \checkmark Recommend improvements in the market design.
- Given the breadth of the report, this presentation covers highlights from our 2022 SOM Report related to capacity market performance and state policy in the NYISO markets

Schedule

- The 2022 SOM was posted <u>here</u> on May 17.
- This report is being presented at several meetings:
 - ✓ May 25: MIWG
 - Energy and Ancillary Services focus 90 minutes
 - ✓ May 31: Market Committee
 - Overview one hour
 - ✓ June 6: ICAPWG
 - Capacity Market & Policy focus 90 minutes
 - Plan to stay on schedule for each presentation Additional slots can be scheduled if there is interest.

Evaluation of Capacity Market and Deliverability

Capacity Market Performance

- The market has maintained reliability with minimal OOM investment for 20 years. However, the changing resource mix reveals major challenges:
 - ✓ Deliverability testing poses a barrier to entry
 - ✓ Capacity prices do not provide adequate locational signals
 - The IRM and LCR processes produce results that are inefficient and overly volatile
 - Resource adequacy modeling improvements are needed for efficient capacity accreditation
 - Capacity prices do not reflect seasonal differences in the value of capacity
- The following slides discuss these issues.

Class Year Deliverability Study

- New resources must complete Deliverability Study to receive CRIS and sell capacity
 - If not deliverable, assigned cost allocation for System Deliverability Upgrades (SDUs)
- \$1.5 billion in SDUs identified for Class Year 2021 projects
- Key aspects of the deliverability test:
 - ✓ Resource must be deliverable throughout capacity zone/region
 - Each bottleneck tested by increasing output of all upstream resources to max
 - Renewables modeled using UCAP derating factor (UCDF) based on average summer peak output (e.g. assume 48% capacity factor for solar)

Impact of SDUs on Cost of New Resources Preliminary CY21 SDUs

Area	Queue #	Туре	Requested CRIS MW	Deliverable CRIS MW	SDU Cost (\$/kW UCAP) \$ per kW Levelized (% of		Final Decision
			(ICAP)	(ICAP)	UCAP	Net CONE)	
	774	Solar	119	55	1,136	140	Withdraw from CY
Northern NY	864	Solar	120	55	1,125	139	Accept partial CRIS (46%)
- Thousand	881	Solar	100	38	1,837	227	Withdraw from CY
Island	882	Solar	100	55	1,354	167	Withdraw from CY
	953	Solar	125	49	1,306	161	Withdraw from CY
N.Y.C							
Staten Island	840	Storage	650	121	795	50	Accept partial CRIS (19%)
Long Island -	958	Wind	96	0	528	61	Withdraw from CY
West	959	Wind	1260	0	528	61	Withdraw from CY
Long Island - Central	925	Storage	100	0	1,206	138	Withdraw from CY
	942	Storage	60	0	2,557	293	Withdraw from CY
Long Island - East	766	Wind	880	0	468	54	Accept SDU
	987	Wind	44	0	468	54	Accept SDU
	956	Storage	110	0	577	66	Accept SDU
	965	Storage	77	0	669	77	Accept SDU
	994	Storage	90	0	610	70	Withdraw from CY
	746	Storage	150	0	542	62	Withdraw from CY

Final SDUs for the four LI projects that accepted fell to \$224/kW UCAP

Issues with Deliverability Process

- Models unrealistic dispatch patterns when testing deliverability
- Is poorly suited to test renewables and storage accurately
- Establishes permanent CRIS rights that may not accurately reflect deliverability over time
- Protects existing resources from competition
 - Incumbent generators facing same constraint get full capacity payment

Issues with Deliverability Process Treatment of Renewables and Storage

Deliverability Study Underestimates Headroom East/Central Long Island Example

LIU VII VIIII VA

Section VIII.C

Capacity Market Locational Signals

- Current four zones don't capture all relevant constraints
- Existing or potential bottlenecks within capacity zones:
 - ✓ Staten Island and NYC
 - ✓ Zones A/B and ROS
 - \checkmark Zones G and H
 - ✓ Zones A-E and Zone F
- Zone creation process is inadequate relies on deliverability study framework
- Flaws in LCR Optimizer contribute to inefficient/volatile requirements
 - Current NYISO project underway to consider Optimizer objective function and other issues

Section VIII.B

MRI and Net CONE by Zone 2023/24 LCR Case at Level-of-Excess

Cost of Reliability Improvement (CRI) By Zone 2023/24 LCR Case at Level-of-Excess

Increasing Role of Transmission Security Limits (TSLs)

- LCR Optimizer uses minimum 'floors' based on TSLs
- NYISO recently updated TSL calculation to align with planning process caused TSLs to rise and set NYC LCR in 2023/24
- Some resources contribute less towards TSL-based LCRs:
 - ✓ SCRs contribute 0 MW, assumed to be not available
 - ✓ Large resources can increase largest contingency, raise LCR
 - ✓ When TSLs bind, these resources cause LCR and consumer payments to increase
 - ✓ SCRs and large resources in NYC over-compensated by approx. \$0 to \$52 million in 2023/24

Section VIII.G

Impact of TSL on Future NYC LCRs

Section VII.B-H

Capacity Market Recommendations Addressing Locational Signals and Deliverability

- *Recommendation* #2022-4 Implement a dynamic process for defining granular locations in the capacity market.
 - ✓ Recommend zones based on bottlenecks, align with planning model
 - ✓ Will reduce need for and effects of flawed deliverability process.
 - ✓ Allow for more efficient zonal prices to reduce overpayments and improve incentives to retain capacity in key areas.
- *Recommendation #2022-1* Compensate capacity suppliers based on their contribution to transmission security LCRs are set by TSL.
 - ✓ Would eliminate overcompensation of large resources and SCRs when they cause the LCR in their zone to increase.
- *Recommendation #2013-1c* Implement locational marginal pricing of capacity ("CLMP")
- *Recommendation #2012-1c* Establish financial capacity transfer rights

Section VII.B-H

Other Capacity Market Recommendations

- *Recommendation 2021-2* Improve capacity modeling and accreditation for specific types of resources.
 - NYISO has adopted capacity accreditation based on marginal contribution to reliability
 - Resource adequacy modeling improvements are still needed for various resource types
 - Recommend to address over-compensation of thermal resources with functionally unavailable capacity
- *Recommendation 2022-2* Establish seasonal capacity requirements and demand curves.

Role of NYISO Markets in State Policy

Role of NYISO Markets in Clean Energy Investment

- New investments in New York's power sector are largely driven by state policy
- Pursuing clean energy targets efficiently will have massive implications for costs borne by consumers
- NYISO markets play an important role in helping meet state goals as efficiently as possible
 - Signal which policy-driven projects provide the most value to the power system and therefore require the least subsidy
 - ✓ Attract investment in complementary resources that provide reliability and flexibility
 - Reduce the informational burden of planning by promoting market-based investment and innovation

Section III.A

Investment Signals for New Resources Net Revenue and CONE, 2020-2022

Section III.B

Renewable Investment Behind State Targets

- NYISO developing reforms to streamline the Class Year process
- New investment hampered by:
 - ✓ REC cannibalization \rightarrow NY Cap-and-Invest could help address
 - Deliverability Test process

Section III.B

Market Risk for Renewable Projects Solar Project in System & Resource Outlook

• Potential revenue shortfalls under Index REC framework

Section III.C

\$/kW-year

Market Signals for Energy Storage in System & Resource Outlook

• Market signals support storage investment when it efficiently helps to integrate renewables

Section III.B

Markets and Policy Conclusions and Recommendations

- NYISO market design efficiently rewards storage for reducing curtailment of renewables and providing capacity value
 - Implication: markets can incentivize the level/types/locations of storage that efficiently complement renewables
- Recommended enhancements would better value flexibility provided by storage
 - ✓ Capacity accreditation modeling (#2021-4) and granular capacity market locations (#2022-4)
 - ✓ Reserves in NYC and Long Is. (#2017-1, #2021-2)
 - ✓ Compensate reserve providers that improve transmission system utilization (#2016-1)
 - Improve shortage pricing (#2017-2)
 - ✓ Dynamic reserves (#2015-16)
 - ✓ Longer duration reserve products (#2021-1)

